Naive Bayes Classification
Naive Bayes is a classification algorithm based on Bayes' theorem with the assumption of independence between features. Despite its simplistic assumptions, Naive Bayes is a popular and effective algorithm for text classification tasks, such as spam filtering or sentiment analysis.
Method: POST Authorization: API Keyhttps://engine.raccoon-ai.io/api/v1/ml/classification/naivebayes
Authorization
| Type | Key | Value | 
|---|---|---|
| API Key | X-Api-Key | rae_###### | 
Request Body
| Section | Key | Data Type | Required | Description | 
|---|---|---|---|---|
| train | data | json | true | Data that use to train the model | 
| features | list | true | Input features (X) | |
| targets | list | true | Output targets (y) | |
| config | json | false | Train configurations | |
| predict | data | json | true | Data that need to predicted by the trained model | 
| config | json | false | Predict configurations | 
Types
{
    "train"   : {
        "data"    : <json_data>,
        "features": <list>,
        "targets" : <list>,
        "config"  : {
                "std_scale": <boolean>,
                "encoder"  : <"label" | "drop">,
                "val_size" : <float>
            }
    },
    "predict": {
        "data": <json_data>,
        "config": {
            "include_inputs": <boolean>,
            "round": <int>
        }
    }
}
Sample
{
  "train": {
    "data": {
      "R&D Spend": {
        "0": 165349.2,
        "1": 162597.7,
        "2": 153441.51,
        "3": 144372.41,
        "4": 142107.34,
        "5": 131876.9,
        "6": 134615.46,
        "7": 130298.13,
        "8": 120542.52,
        "9": 123334.88
      },
      "Administration": {
        "0": 136897.8,
        "1": 151377.59,
        "2": 101145.55,
        "3": 118671.85,
        "4": 91391.77,
        "5": 99814.71,
        "6": 147198.87,
        "7": 145530.06,
        "8": 148718.95,
        "9": 108679.17
      },
      "Marketing Spend": {
        "0": 471784.1,
        "1": 443898.53,
        "2": 407934.54,
        "3": 383199.62,
        "4": 366168.42,
        "5": 362861.36,
        "6": 127716.82,
        "7": 323876.68,
        "8": 311613.29,
        "9": 304981.62
      },
      "State": {
        "0": "New York",
        "1": "California",
        "2": "Florida",
        "3": "New York",
        "4": "Florida",
        "5": "New York",
        "6": "California",
        "7": "Florida",
        "8": "New York",
        "9": "California"
      },
      "Profit": {
        "0": 192261.83,
        "1": 191792.06,
        "2": 191050.39,
        "3": 182901.99,
        "4": 166187.94,
        "5": 156991.12,
        "6": 156122.51,
        "7": 155752.6,
        "8": 152211.77,
        "9": 149759.96
      }
    },
    "features": ["R&D Spend", "Administration", "Marketing Spend", "Profit"],
    "targets": ["State"],
    "config": {
      "std_scale": true,
      "encoder": "label"
    }
  },
  "predict": {
    "data": {
      "R&D Spend": {
        "0": 165349.2,
        "1": 162597.7
      },
      "Administration": {
        "0": 136897.8,
        "1": 151377.59
      },
      "Marketing Spend": {
        "0": 471784.1,
        "1": 443898.53
      },
      "Profit": {
        "0": 471784.1,
        "1": 443898.53
      }
    },
    "config": {
      "include_inputs": true,
      "round": 2
    }
  }
}
Reponse Body
| Key | Data Type | Description | 
|---|---|---|
| success | boolean | Indicate the success of the request | 
| msg | string | Message indicators | 
| error | string | Error information, only set if success is false | 
| result | json | Result, only set if success is true | 
| score | json | Accuracy scores of the training and testing phases, only set if success is true | 
| generated_ts | float | Generated timestamp | 
Types
{
    "success": <boolean>,
    "msg": <string>,
    "error": <string>,
    "result": <json>,
    "score": {
        "train": <float>,
        "test": <float>
    },
    "generated_ts": <timestamp>
}
Sample
{
  "success": true,
  "msg": "Model trained and predicted successfully",
  "error": null,
  "result": {
    "R&D Spend": {
      "0": 165349.2,
      "1": 162597.7
    },
    "Administration": {
      "0": 136897.8,
      "1": 151377.59
    },
    "Marketing Spend": {
      "0": 471784.1,
      "1": 443898.53
    },
    "Profit": {
      "0": 190209.72,
      "1": 186863.18
    },
    "State": {
      "0": "New York",
      "1": "California"
    }
  },
  "score": {
    "train": 0.942446542689397,
    "test": 0.9649618042060305
  },
  "saved_in": null,
  "generated_ts": 1685439220.425382
}